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The central concern of this paper is to develop for rough (two-dimensional, metallic)
surfaces a model other than the Gaussian one usually used. An analysis, via the notion of
‘upcrossing characteristics’, of some new data on abraded stainless steel, as well as a
new look at some old data, indicates the need for such a model. The model adopted is
of a form that gives y2-type marginal height distributions for the surface.

After the new model has been introduced and motivated, its properties are investi-
gated in some detail. In particular, the properties of the surface and its profiles at local
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434 R.J.ADLER AND D.FIRMAN

maxima are studied by examining, for example, the height distribution and the surface
curvature at such points. Phenomena are observed that are notably, qualitatively,
different to what happens in the Gaussian model.

Although the model introduced here is motivated by problems in the study of
metallic surfaces, we believe it to be useful in other areas. Consequently, those sections
of the paper that investigate the properties of the model are written so as to be inde-
pendent of the original motivation. The paper also reintroduces, in an applied setting,
the idea of examining surfaces via their upcrossing characteristics.

1. INTRODUCGTION

It is a well established fact that all surfaces used in engineering practice are rough when judged
by the standards of microscopic measurement. Moreover, this roughness plays an essential role in
determining macroscopic phenomena such as the friction, electric contact, and adhesion between
two macroscopically smooth surfaces. Because of the impossibility of specifying the exact form of
any given surface, mathematical models of random surfaces have been used to considerable
advantage over the last fifteen years to derive the macroscopic properties of a surface from an
essentially microscopic description of its roughness. The first of these random models was pro-
posed by Greenwood & Williamson (1966). The so-called three-point model, which we shall discuss
below, was later developed by Whitehouse & Archard (1970), and a theory of contact was
derived from this model by Onions & Archard (1973). A recent review of the problems of rough
surfaces and applications of random models to these problems is given by Archard ¢t al. (1975).

A more complete, and in many ways more rigorous, approach to the characterization of rough
surfaces has been made by Nayak (1971, 1973 4, b), building on the models developed by Longuet-
Higgins (19574, ) to describe ocean surfaces. Nayak’s model has found numerous applications,
including a random rough surface model for adhesion by Bush et al. (1976), which develops
further a model studied by Fuller & Tabor (1975), Johnson ¢f al. (1971) and Johnson (1975).

One aspect that all of the above models have in common is the underlying assumption that the
random surface has a Gaussian, or normal, distribution. Although attempts to justify this assump-
tion are often made by appealing to the apparent normality of actual surfaces, the main justifi-
cation has lain in the fact that only Gaussian models have appeared to be analytically tractable.
This, of course, is due to the eminently simple and elegant form of the multivariate normal
probability density, which makes possible analytic manipulations that seem almost impossible
to do for other distributions. Nevertheless, it is the contention of this paper that neither of the
above reasons is sufficient to justify limiting consideration to only the Gaussian model. In § 3 we
present some new experimental data, and re-examine some old, that indicate that the assumption
of normality is often contra-indicated. In the subsequent sections we undertake an analytic
examination of a non-Gaussian model suggested by the data. The model itself will be introduced
in § 2.

Before we begin our study, however, it is probably worth while to make two comments about
the scope of this paper. The first is to note that, while the principal motivation for introducing the
model we shall consider comes from the field of surface roughness, there is good reason to expect
that it may also be useful in other disciplines where random surfaces have found acceptance as
mathematical models. In particular, it would seem to be readily applicable to the modelling of
wind strength, where similar one-dimensional (or profile) models have already proven useful
(see, for example, Davenport 1967, Hasofer 19724, b.) Consequently, the paper has been written
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in such a way that the terminology used and approach taken are those of general statistical
analysis rather than those specific to the discipline of rough surfaces.

Secondly, we must, in all honesty, note that having developed and investigated our model for
rough surfaces, we do not apply it to specific problems, such as wear and adhesion. We intend to
tackle some of these problems in a separate work.

2. THE X%-MODEL

We commence by describing the Gaussian model. We shall use upper case italic letters for
random variables and surfaces, (s,¢), —o < s, ¢ < 0, to denote a point on the plane, and Greek
letters for parameters relating to the distributions of random objects. We say that X(s, ¢) is a
Gaussian, or normal, random surface if the collection of random variables {X(s,, ¢,), ..., X(s, &)}
possesses a multivariate normal distribution for every collection of points (s;, ¢,), ..., (s, ). Let
us now make the assumption that the mean of X(s, ¢) is zero, and, furthermore, that X is
a homogeneous surface. That is, the statistical properties of the variables {X(s, +a, t,+5),
X(s,+a,t,+b)} are independent of @ and 4. Then the distribution of the surface X is com-
pletely specified by its covariance function, Rx (s, t), which can be defined either by

Ry (s,t) = €[X(0, 0) X(s,1)], (2.1)

where & denotes statistical expectation, or by

. |
Re(sf) = lim 77 f . f ©X(0,0)X(s,)dsd (2.2)

(Strictly, (2.1) and (2.2) are only equivalent when X is ergodic. For details see, for example,
Adler (1981).

Several useful statistical parameters are easily obtained from R (s, t). The standard deviation,

o, of the distribution of X (s, t) isgiven by 02 = Rx(0, 0). Writing down the Fourier representation

Rx(s,8) = [ [* explitor+ )1 fx(os) dray (23)

of Ry, yields the spectral density fx(x,y) of X(s,¢) that can be used to describe its decomposition
into harmonic, or wavefunction, components. Using the spectral density we can define sets of
second- and fourth-order spectral moments, A;; and v;; respectively, that will be extremely
important in the forthcoming analysis:

Aif:f f stifx(s,8)dsdt, i+j =2,

Vij = f_wf_msit{fx(;, t)dsdt, i+j=4

With application of the representation (2.3) it is straightforward to check that the 2kth-order
spectral moments are obtainable from the 2kth-order derivatives of Rx(s, ¢) at (0, 0). Thus

—02R(s, t) _0'R(s, 1)

A = ; = . )
i st ey K 05! |omtmo

(2.5)

Furthermore, (2.1) easily yields that 2kth-order spectral moments are the variances of the kth-
order partial derivatives of the surface X (s, ¢), and that the covariance functions of these derivatives
39-2
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are merely the appropriate 2kth-order partial derivatives of Rx(s, f). Indeed, we also have the
important general formula

P 2 H+E8X (s, 8) OrH9 X (s, 8) _ Q¥ HAHYHOR (s, 1)
0s® Oth Os” Ot Osatr Jth+e

s=t=0
o] o]
(= 1)ethieaires j f (s, ) dsdt. (2.6)
Relations (2.4)—(2.6) are extremely important in the study of Gaussian surfaces, for implicit
in them is the fact that the multivariate density of the surface X(s, t) and any of its partial deriva-

tives is multivariate, normal, and dependent only on its spectral moments. Indeed, it is this
latter fact that makes Gaussian surfaces so readily amenable to statistical investigation.

015

e

=

=
I

10

20

probability density
<
>
[$3]
1

| ] J
0 20 40

surface height
Ficure 1. x2 probability densities.

Noting all these facts, we can now proceed to build a different random surface which, while
exhibiting qualitatively different behaviour, possesses much of the mathematical simplicity of
the Gaussian model. To do this we take n, n > 1, independent Gaussian surfaces X,(s,1), ...,
X, (s,t) and define the y2-surface

Y(s,1) = [Xi(s, )] + ... + [ Xa(s,0)]* (2.7)

It is straightforward to check that the probability density for ¥ (s, ¢) is that of a scaled ¥2 random
variable with n degrees of freedom, so that it is of the form

2(y) = [0z 23" T(§n)] 1 ydn—Dexp (—dy/02), y > 0. (2.8)

Graphs of this density for various values of n, and o2 = 1, are given in figure 1. It is clear from
these graphs that the distribution of Y (s, #) is skewed to the right, the amount of skewness being
inversely proportional to the parameter z. In the extreme cases of n = 1 and n = 2 the density
descends monotonically from y = 0. The case n = 2 corresponds to Y(s,¢) having a negative
exponential distribution and, as is well known in wind modelling, to ¥(s,#)} having a Raleigh
distribution.
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Later we shall see that rough surface data often exhibit skewness in the opposite direction to
that displayed in figure 1. We shall overcome this difficulty by working ultimately with a model

of the form
Z(s,t) = M—Y(s,0) (2.9)

where M is a predetermined constant. We shall call a random surface of this form an M-inverted
X=-surface. For the moment, however, we shall deal only with simple y2-surfaces.

An immediate consequence of the definitions (2.7) and (2.1) is that the mean of Y (s, ¢) is no2,
and its standard deviation is (2r)# o2. Similarly, its covariance function is given by

Ry (s,1) = &{[¥(0,0) —nof] [¥(s,t) —nof]}
= 2nR% (s, 1), (2.10)

where the second equality follows by applying standard results on the moments of normal
variables.

The importance of (2.10) lies in the fact that once Ry (s, ¢) and z are specified so is Rx (s, ¢). But
since Rx determines the distribution of the random surfaces X;(s, ¢), and these determine ¥(s, ¢),
it follows that the distribution of Y(s, ¢) is completely determined once z» and Ry (s, t) are given,
and this determination incorporates, via the X;(s,¢), a certain amount of ‘normality’. It is this
fact that makes the statistical analysis of y2-surfaces mathematically tractable. We shall com-
mence this analysis after providing some justification for the application of this model to rough
surfaces.

3. JUSTIFICATION OF THE X2-SURFACE
(a) Experimental data: new and old

The data that actually motivated the present study originally came to our attention through
the work of Silverman (1980), where they were used to provide an example of a form of non-
parametric density estimation. They were collected by Dr Adrian Bowyer of the University of
Bath, who studied them in Bowyer & Cameron (1977) and Bowyer (1980), and who very kindly
made them available to us. The data represent the heights, measured in micrometres, of a
specimen of stainless steel, with zero height corresponding to a least-squares-fit, mean plane
through the data. The observations were taken on a 50 x 300 square grid, the rows and columns
of the grid being 10 pm apart. Thus the specimen actually measured 0.5 mm x 3 mm. The data
were gathered by using a Talysurf machine linked to an analogue-to-digital converter and a data
logger. Before the surface was mapped it had been ground (in a direction parallel to the 3 mm
tracks) and abraded with 400 grit emery paper. Figure 2 depicts the histogram of the 15 000 data
points. Drawn on the same figure is a histogram of a normal distribution with the same mean and
variance as that of the data. |

It is immediately apparent from figure 2 that the histogram of surface heights shows a marked
skewness to the left, indicating that the distribution of, say, the heights of the local maxima
should also show a marked skewness to the left, compared with what one would expect if the
surface distribution were Gaussian. (The histogram skewness is perhaps even more clearly
depicted in figure 9 of Silverman (1980), where a smoothed version of it is given.) The skewness,
however, is most clearly identified in figure 3, where the proportion of the surface lying below a
specified height is plotted on normal probability paper, which has a distorted vertical scale so
that a Gaussian distribution of heights will appear as a straight line. The graph here is, however,
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certainly not straight, but shows the characteristic convexity indicative of left-skewness in the
original data.

To our surprise, given the general acceptance the Gaussian model has gained in surface
science, the skewness exhibited by Bowyer’s data turns out to be not at all uncommon. For
example, in the paper that introduced the Gaussian model, Greenwood & Williamson (1966)
present normal probability plots of two sets of data. One yields a graph that could be reasonably
accepted as a straight line, but the second, reproduced here as figure 4, exhibits precisely the same
type of deviation from normality as that presented by Bowyer’s data.

AL B

< In relation to this data, Greenwood & Williamson make the following comment: ¢ Although
:é the surface is at first sight highly non-Gaussian, in fact nearly 90 9%, of the surface is approximately
é E 4000
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Ficure 2. Histogram of surface heights for abraded stainless steel. The continuous
curve is the Gaussian with the same mean and variance.
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Gaussian; the surface. . .would behave in contact as if Gaussian. ..’. We find it difficult to
accept this claim for two reasons. First, it is a well established statistical fact that almost any
unimodal distribution will look ‘approximately Gaussian’ over a considerable part of its range
when mapped on normal probability paper. The important phenomenon is not how much
apparent agreement there is, but rather the extent of the curvature in the graph. This is con-
siderable in figure 4. Secondly, in surface science, the distribution of asperities is the determining
factor in describing the macroscopic properties of the model. Since it is reasonable to expect that
this distribution will in turn be primarily determined by the right-hand tail of the surface height
distribution, itis imperative that the model fits well at this end, regardless of its fit to the main bulk
of the distribution.

fsb.'-".b 999+ o "
E
- 99+
é X
‘S 95+ x
g
B s
% 801 .
i) X
<2 50 «
g )
‘g 20+ ;‘X
hS) *
o b
o 5 &
& k& K2
g XXXXXXX
g 0l x
X X
| | | |
0 1 2

surface height/pm

Ficure 4. Cumulative height distribution of mild steel specimen of Greenwood & Williamson (1966).
Note the similarity to the stainless steel specimen of figure 3.

We could continue in this fashion for some time, presenting yet more data sets exhibiting
skewness. However, we shall let these two suffice to demonstrate our contention regarding the
non-normality of many actual surfaces, and now proceed to see if a simple-minded approach
can be developed to overcome this problem.

(b) Transforming to normality

The most obvious response to a Gaussian model and data of the form shown in figures 3 and 4
is to transform the data to normality. In one respect, this is easily done, and figure 5 shows normal
probability plots of the two transformations

Yy(s,) = In[10— ¥(s, )], | (3.1)
Y,(s, 1) = {In[10 = ¥(s, ))]}%. (3.2)

Both of these transformations produce data that look far more normal than do the original data.
It is unfortunate, however, that merely transforming a non-Gaussian random surface in such
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440 R.J.ADLER AND D.FIRMAN

a way that its height distribution becomes normal does not suffice to guarantee that the surface
is actually a Gaussian surface. For this stronger condition to be satisfied it is necessary that all
collections of random variables {¥;(sy, t,), .., ¥;(s;, t;,)} have an appropriate multivariate normal
distribution.) To determine whether or not the transformations (3.1) and (3.2) actually yield
Gaussian surfaces it is necessary to concentrate on some aspect of the surface that reflects its
multivariate distribution. The aspect upon which we shall concentrate is a measure of the level
crossing behaviour, as determined via a concept known as the upcrossing characteristic, which we shall
now develop.

— X o
X °
99.9"‘ x o]
° x o
Q 99+ x o
b X °
3 e 951 x o
“U"d
o .2 «
)
g2 8of-
[=]
R "
89 50 X0
85 0
;.a oy X0
o 2 20f &
o 9
S [} ox
.0 5
8 o X
=
& 1 o x
x
0.].'—0 X .
| | 1
1 2 3

height of transformed surface/um

Ficure 5. Cumulative height distribution of stainless steel specimen after height transformation
X , transformation (3.1); O, transformation (3.2).

(¢) Upcrossing characteristics

In dealing with stochastic processes X(t) defined on the real line, one way to examine the
correctness of an assumed model that is particularly relevant to the problems of central concern
here is to investigate its level crossing behaviour. For example, if X(¢) is a zero-mean, homo-
geneous, Gaussian stochastic process with

ot = S[X3(1)], A, = E[(dX(r)/dr)%, (3.3)
and Nx(u, T) denotes the number of upcrossings of the level u by X(t), 0 < ¢ < T, then
E[Nx(u, T)] = (TA}/2r0) exp (—u?/20%). - (3.4)

(see, for example, Cramér & Leadbetter 1967). However, if Y () = X2(t) + ... + X2(¢) is a y2-
process, and each of the X;(¢) has variance 02 and second spectral moment A, as in (3.3), then the
expected upcrossing rate for Y(t) is different to that given by (3.4). In fact

T A\ 3 3n-1)
STy 1 T)) = T35 (;2) (5:‘;2) exp (~u/20%) (3.5)
(see, for example, Hasofer 1974, Sharpe 1978). These two upcrossing rates are markedly

different, and so comparing the observed up-crossing rate of a particular set of data with the
expected rate often gives a good indication of which model is appropriate.
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While it is possible to apply the results for stochastic processes in univariate time to random
surfaces by using profile data, it is more efficient to use the full two-dimensional nature of the
surface. To do this it is necessary to generalize the notion of upcrossings from processes to
surfaces, a generalization most effectively achieved through the upcrossing characteristic, as intro-
duced in Adler & Hasofer (1976) and described in considerable detail in Adler (1981).

To define this concept, let § = [0,4] x [0, 5] be a rectangular region in the plane, and let
4,(X,S) denote the excursion set of X(s,t) above the level u, over the rectangle §. Formally

A,(X,8) = {(s,t) eS: X(s,8) > u}.
The upcrossing characteristic ¢(4,,) of the excursion set is then defined as

¢l4u(X,8)] = Z[Nu(x) = Nu(x7)), (3.6)

where, if we denote by E, the horizontal line with points having coordinates (s, x) for 0 < s < q,

M) {number of disjoint closed intervals in 4, n E, if X(0, %) < u,
X) =
“ the above number minus one if X(0, x) > #, (3.7)

Ny(x) =lim N(y) (g < ).

The summation in (3.6) is over all x € (0, a] for which the summand is non-zero. There is only a
finite number of such values of x.

Two examples of how to compute ¢ are given in figure 6, in which the enclosed areas represent
excursion sets 4,,. To see how these work proceed as follows. For each #, 0 < x < g, the quantity
N, (%) is determined as described above, and since N, () is a simple step function in x its intervals
of constancy can be displayed along the vertical axis. Consider those x-values, #y, ..., ¥y, say, at
which N,(x) changes; in the two examples given N = 4. At these points calculate.

C; = Nulsy) = Na(a7),

which could be called the jth contribution to ¢. Since the limit defining C} is one-sided, C; will be
zero for some values of j. Finally, ¢(4,) is given by Z,C;.

A heuristic understanding of the upcrossing characteristic can be gained by noting the
following facts: if the excursion set 4, is composed of a single simply connected set without holes
that does not intersect the boundary 85 of S, then ¢(4,) = 1; if 4, is composed of £ such sets then
@(4,) = k; if k such components of 4, contain a total of m holes, then ¢(4,) = k—m; etc. If 4,
does intersect 35, a ‘ boundary correction factor’ amounting to the number of upcrossings of the
processes X(0,¢), 0 < t < b, and X(s5,0), 0 < 5 < 4, plus one if X(0,0) > , has to be subtracted.

The upcrossing characteristic has many useful properties, all of which are enumerated in
detail in Adler (1981). The property that is most relevant in the current setting, however, is that
for both Gaussian and ¥2 random surfaces its expected value can be written in a neat closed form.
For a Gaussian surface X(s, t) we have

SlglAu(X, )]} = m(S) (2n)~} Abo-Su exp (—u?/20%), (3.8)

where A = AzyAy— A2, and the A, are given by (2.4). We denote the area of § by m(S). For a
¥2-surface ¥(s,t), whose component fields X,(s, ) have variance 2 and second spectral moments

A;j, we have et A
ST, ) = B [ - - 1) | exp (- 33)- (3.9)

40 Vol. 303. A
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(Note that whereas in (3.8) u can take both negative and positive values, (3.9) is valid only for
u > 0, since a y3-process is, by definition, always positive. Furthermore, (3.9) breaks down when
u = 0 for technical reasons detailed in Adler (1981).

Although (3.9) is valid for yi-surfaces, Y(s,¢), and we shall be later working with A-inverted
surfaces Z(s,t) = M — Y (s, t), this result also provides the expected up-crossing characteristic for
M-inverted surfaces. Noting that 4,(Y,S) = [4,,_,(Z, S)]¢, where B¢ denotes the complement of
B in S, and using the fact that ¢(B) = —¢(B¢) for every subset B of §, we obtain, for u < M,

—m(S) (M —u)in=2 A [ (M —
sii4,2, )1y = G DS )] expl— (M- 200 (3.0
N,
c=0r () o oMutz|
1 ' 1
Cy=—1——
C=1L ]
2 2
C2 = ll._.___J
Cy= 00—
1
1 C, = 1——
Cl = 1‘_._

Figure 6. Computing the up-crossing characteristic: (a) ¢(4,) = 1; (b) ¢(4,) = 0.

This result, as well as the corresponding one for Gaussian surfaces, will, in the following
section, form the basis for rejecting a rough surface model generated by transformation to
normality’ in favour of an M-inverted y%-model. Before we can do this, however, we have to
allow for one more difficulty generated by the data.

The method described above for determining the upcrossing characteristic of a random
surface implicitly assumed that the excursion sets, or, alternatively, the contour lines of the
surface, were known. Of course this sort of information is often difficult to obtain, the data
generally coming in the form of heights of the surface over some regular grid. This, for example,
is so for the data described in § 3. It is fortunate that, if the grid is fine enough, the upcrossing
characteristic can be approximated by using only grid data.

To see how an approximation can be obtained, let L, » > 1, denote the lattice of points in the
plane of the form (i/n, j/n), 1, j integers, and consider the example in figure 7, with a single closed
curve enclosing the excursion set 4,. Also in this illustration is the grid Lg, a ‘natural’ approxi-
mation to 4, obtained by joining with horizontal or vertical lines all neighbouring points of Ly
lying in 4,. For general n > 1, let N,(S) denote the number of ‘squares’, i.e. quadruples of
L,-points, in the approximation to 4, based on L,,. Strictly N,(S) is also a function of #, but we
can drop this parameter without causing confusion. Similarly, let N,(V), N,(H) and N,(P)
denote, respectively, the number of vertical and horizontal lines (i.e. neighbouring pairs of
L,-points), and points of L, in this approximation. Then note for the example of figure 7 we have
No(S) = 3, Ng(V) = 11, Ny(H) = 9, Ny(P) = 18,and Ny(S) — [Ns(V) + Ny(H)] + N(P) = 1 = (A,).
Relations of this form in fact hold in general, although we have to introduce a boundary correction
term to cover the case when 4, intersects one or other of the axes. To this end let us write N5 (V)
and N} (H) to denote the number of pairs of neighbouring points of L, both of which lie in 4,
and are on the vertical and horizontal axes respectively. Similarly, let N3 (P) denote the number
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of points of L, on either axis lying in 4,. Then we have the following result, which gives us the
required approximation:

‘P(Au) = lim ‘pn(Au), (3°11)

where
Pn(dy) = No(S) =[N (V) + N, (H)] + N, (P) =[N3 (V) + N (H)] + NZ(P).  (3.12)

(For details on the type of convergence in (3.11) and a proof when the underlying random
surface is Gaussian see Adler (1977, 1981). The proof for the y%-case is virtually identical to that
in the Gaussian situation.)

The approximation given by (3.12) is particularly simple to apply, by computer, when the
data are given in grid form.

1.0 NV
X X X X X X X
P A X X X X
X F X X X
0.5 X X X
x x A x
X X X X
X X X X X X
Y VI 10

FiGure 7. Obtaining the upcrossing characteristic by approximation on a square grid. The excursion set
is contained within the unit square, and the points of the grid Ly are marked with crosses.

Before concluding our discussion of upcrossing characteristics, it seems worth while to point
out the connection between them and certain stereological concepts with which readers in
materials science may be more familiar. The upcrossing characteristic is, in fact, little more than
a generalization to excursion sets of the ‘net tangent count’ of DeHoff (1971), a concept that in
one form or another seems to date back to at least the 1950s. Its introduction in Adler & Hasofer
(1976) was motivated by a sterological study of Serra (1969). However, the upcrossing charac-
teristic has a mathematical life of its own, as excursion sets, on which it is defined, do not generally
satisfy the conditions required by stereologists for the sets that they study.

Another way to look at the upcrossing characteristic is to consider it as the Euler-Poincaré
characteristic of the excursion set, with a boundary correction. (In fact, it was in this form that
it was originally introduced.) Since the Euler-Poincaré characteristic is just one of a large class
of Minkowski functionals (see, for example, Santalo (1976) for a discussion of these) one is
immediately led to ask if other such functionals could also be used for surface fitting. The answer
here must be negative, for no other functional yields such a neat, closed form for its expected
value as does the Euler—Poincaré functional, (In fact, this closed form seems to arise more by

40-2 .
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good luck than good management.) As an example, consider a close relative of the upcrossing
characteristic, the ‘absolute tangent count’ of the excursion set, @ans[4,(X,S)], say, discussed
in DeHoff (1978) and subsequently in Baddeley (1980). This is related to absolute curvature
integrals and can be defined by altering (3.6) to

q)abs[Au(X, S)] =3 |Nu(x) _Nu(x~)|
x
From § 5.4 of Adler (1981) we immediately obtain that if X(s, ¢) is a Gaussian field then
E{pans[A,(X, 8)]} = m(S) (2m)~F Ao exp (~u?/20%)

2u —Ayu 2(vyy — A} /0% 2,9 2 2
8 {0'2 ? [0'2”11 - /\%1] * (2m)E Ay exp L= At /2(0% = /\11)]}

where @ is the standard normal distribution function.

Not only is this formula far more complicated than that for the mean upcrossing characteristic,
i.e. (8.8), but also it involves two more parameters, A,; and v,,. This is a substantial drawback in
using this formula for surface fitting. Although an analogue of the above has never been derived
for yi-surfaces, it is clear that, at the very least, it would involve the incomplete I-function,
rendering it of little practical values. For, as we shall soon see, it is the simplicity of formulae
(3.8)—(3.10) that makes them so useful in practice.

Finally, we note that the grid approximation outlined above also has its roots in the stereo-
logical literature (specifically Serra 1969) but, for technical reasons, needs to be rederived in the
current setting.

(d) An upcrossing analysis of the data

We return now to the rough surface data of Bowyer described in § 34. As figure 2 indicates, an
appropriate model for these data would seem to be an M-inverted x% random surface. In fitting
such a model to the data, by estimating the parameters, M, n, and o2 of the model, we must
proceed with some caution. The 15000 observations that are summarized in the histogram of
figure 2 are far from independent, and thus, as Switzer (1977) points out, analysing them as if
they were independent could be highly misleading. In particular, the high positive correlation
between close points on the surface would lead one to expect that the empirical histogram should
exhibit less spread than exists in the true distribution, thus leading to an underestimate of the
true population variance 2no*. Some bias is also to be expected.

To overcome this difficulty, on the one hand, and, on the other hand, to work with a method of
estimation that places greater emphasis on the general structure of the surface than on its marginal
distribution, we estimated the parameters of an M-inverted y%-model by fitting to the empirical
upcrossing characteristics. In figure 8 the Bowyer upcrossing characteristics (obtained by using
(8.12) with a grid size of 10 pm, so that n = 100) are displayed, for the levelsu = —22 to « = 10.
(The actual data, as figure 2 indicates, stop at about 9 pm. There were actually two grid points at
which the surface height was above 9 um. Here the heights were 17.58 pum and 11.34 ym. These
two values have been replaced by values of 9.0 um throughout the forthcoming analysis on the
assumption that they either represent incorrect readings or, as isolated peaks, would be broken
off as soon as the surface actually came in contact with another, thus making them irrelevant to
the surface’s gross behaviour.)

The solid line in figure 8 represents the expected upcrossing characteristic curve for an
M-inverted y2-surface, calculated according to formula (3.10). The parameters M, n and o2
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were chosen so as to obtain a best fit by a weighted least-squares criterion. The values of para-
meters so obtained were

M =817, n=15 o?=0.641, A} = 2553.8. (3.13)

(The weights used were such as to yield a good fit in the right-hand half of the upcrossing curve,
at the expense of the fit to the left-hand half. The rationale behind this lay in the fact that in
practice only the surface peaks are of interest, and so it is the right-hand tails of the marginal
distribution and upcrossing characteristic curve to which we want the best fit. In practice, the
weighting seemed to have only little effect. For example, fitting by unweighted least squares
yielded the estimates M = 8.72, n = 16, 02 = 0.598, A} = 2751.8, and an expected upcrossing
characteristic curve, that, on the scale of figure 8, was visually indistinguishable from the one given
there.)

XX

400+

upcrossing characteristic

1 } | |

10
upcrossing level/um

L, 1
XXXXX
ARARAXXX X Xx '_.10

——400

Ficure 8. The upcrossing characteristics of the stainless steel data at various levels:
X , actual data; , least-squares fit obtained by using M-inverted x2-model.

Although the fit of the expected to the observed upcrossing rates in figure 8 seems most
satisfactory, it is interesting at this stage to return to the marginal distribution of the surface to
see how well a density function with parameters given by (8.13) fits the histogram of figure 2.
This is shown in figure 9, where two fitted densities, one with o2 = 0.641, as in (3.13), and one
with 02 = 0.575 are shown. It is clear that the density with the smaller variance gives a ‘ better’
fit. However, in view of our previous comments, it is to be expected that the poorer fitting
density, with parameters estimated from upcrossing characteristic curves, is actually the better
estimate of the true density.

To examine whether an M-inverted y2-model is really needed, or whether a ‘ transformation to
normality’ of the type described in § 3 4 suffices to place the data in the realm of a Gaussian model,
the two transformations (3.1) and (3.2) were made. The transformed surfaces Y, (s, ¢) and Y(s, ¢)
each gave rise to their own observed upcrossing characteristic curves, to which were fitted
expected curves on the basis of the Gaussian model (3.9). To enable fair comparison with the
Me-inverted y%-model, both the fitted and observed curves were transformed back to the original
scale, and these are displayed in figure 10.
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Although the fit for these transformed models is not totally unacceptable, it is certainly not as
good as the fit depicted in figure 8. The residual sums of squares show this even more dramati-
cally. A simple logarithmic transformation (3.1) yields a sum of squares of 493 847.9, while the
more complicated model (3.2) yields 360707.1. Both of these are an order of magnitude greater
than that obtained with the M-inverted y:-model, where the (unweighted) residual sum of
squares was 52445.5. Thus we see that despite the fact that simple transformations made the
normal probability plot look ‘good’, they did not yield surfaces whose upcrossing behaviour was
consonant with that predicted by the Gaussian model.

/

A A
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SOCIETY \

2000

PHILOSOPHICAL
TRANSACTIONS
OF

frequency
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—30 —20 -10 0 10
surface height/um

Ficure 9. Histogram of surface heights of figure 2. The continuous curve is an M-inverted x2-model with para-
meter values (3.13). For the broken curve the parameter 02 has been reduced to 0.575.
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92 Ficure 10. The upcrossing characteristics of the stainless steel data at various levels: X, actual data; — - —,
E§ least-squares fit obtained by using the transformation (3.1) and the Gaussian model; ——, least-squares fit
B =

obtained by using the transformation (3.2) and the Gaussian model.
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Itis also important and interesting to note that using another transformation to normality that
improves the fit of the transformed marginal distribution to a normal distribution cannot sub-
stantially improve the fit between the observed and fitted upcrossing characteristic rate. This is
because any such transformation always leaves max (fitted rates) = — min (fitted rates), a relation
that the observed rates fail to satisfy.

Finally, we note for the interested reader that the techniques used in this section for parameter
estimation and model identification are of significant independent interest, and are being
further developed in a more complete statistical framework by Adler (in preparation).

We now leave the data-based justification of this new random surface model, and turn instead
to an interesting theoretical point.

(¢) A theoretical consideration

In the paper that introduced the Gaussian model of surface roughness, Greenwood &
Williamson (1966) developed a simple mathematical model for the contact between a plane and
a rough surface covered with a large number of asperities which, at least near their summits, are
spherical. With no further assumptions other than that of a negative exponential distribution for
the asperity heights, and that each asperity obeys the same area—compliance and load—compliance
laws, their model exhibited exact proportionality between the expected values of the load and
number of contact spots between the surfaces, and the conductance and area of contact. Having
established that their microscopic model predicts these macroscopic phenomena, they proceed
to state that ‘.. .although it will be shown later that height distributions tend to be Gaussian
rather than exponential, the exponential distribution is nevertheless a fair approximation to the
upper 25 %, of the asperities of most surfaces.

We shall see later that the model proposed in this paper yields asperity distributions approxi-
mating negative exponential distributions in their tails even better than does a Gaussian model.
Thus it seems that on the basis of the Greenwood & Williamson model of contact there are good
theoretical grounds for accepting an M-inverted y%-model for surface roughness rather than the
now almost classical Gaussian model.

4. SOME PRELIMINARIES

In this section we begin our theoretical investigation of the model proposed in the preceding
two sections by obtaining explicit expressions for certain multivariate probability densities that
we shall require later. These are the density of the surface and its first- and second-order partial
derivatives at a particular point, and a corresponding density for the surface profile, a concept that
we shall define below.

Throughout the remainder of this paper we shall make the algebraically simplifying assumption
that the component Gaussian surfaces X (s, t) have been normalized, so that o2 = 1. Note that
this implies that the variance of the y2- and M-inverted x2-surfaces Y(s, ¢) and Z(s, £) is 2n, not 1,
and that the scale change affected on Y{s,?) and Z(s, ¢) by dividing non-normalized X, (s, ) by
o is o rather than the more customary o.

We begin with surfaces, and then consider profiles.
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(a) Surfaces

In studying surfaces we shall need to make one more, rather restrictive, assumption, to reduce
the complexity of the forthcoming algebra to manageable proportions. This assumption, which
will be further discussed in § 7, is that Y (s, ¢) is isotropic, i.e. its covariance function Ry (s,¢) is a
function of 2+ 52 only. It follows immediately from (2.10) that Y (s, ) will be isotropic if, and
only if, the X, (s, ) are. The importance of this assumption is that it then follows from (2.5) (cf.
Adler 1981, § 6.2) that the spectral moments A;; and v;; of § 2 are of the form

Aop = Agg = A, Ap=0, } (4.1)
Vog = Vg = 3Vy = 3aA%, v =vy3=0. '
for some A > 0, where the parameter « is simply defined by
o = Vo /A% (4.2)

Longuet-Higgins (19574, p. 387) has shown that the parameter « lies in the range (1.5, c), with
increasing a corresponding to flatter spectra, and so to surfaces exhibiting roughness of shorter

wavelength.
Let us now denote partial differentiation by superscripts, so that
0Y(s, 1) 02Y (s, 1) . .o
—as = YO, gy = Y®st), i+j=2, et

and let Y’ and Y”, respectively, be the vectors (Y®, Y®) and (Y®9, Y. D Y6, 2),

The basic piece of information upon which most of the forthcoming analysis will rely is the
joint probability density of (Y, Y’, Y”). We shall denote this by f(y,y’, ¥"). (In general, we shall
henceforth use fas a generic expression for a probability density.) In particular, since we shall be
primarily concerned with ¢ritical points of Y (s, t), i.e. points (s,¢) where Y (s,¢) = Y®(s5,f) = 0
we require an expression for f(y, 0, y”). But this density can be factored as

S(5,0,5") =f(¥"19,0) f(3,0), (4.3)

and it turns out that the most convenient way to evaluate f(y,0, y") is to obtain each density in
(4.3) independently. We commence with the conditional density.
From (2.7) we have that

n n
Yen=23 XkXIgi, Ny2 Y XPXD, i4j=2. (4.4)
k=1 k=1
Thus, if we condition on the event
o ={X, =0, XD =20 k=1,..,n,1=1,2}

we immediately obtain that

n n
E[YENA] =2 3 5, E[ X Nef]+2 3 [P %2
k=1 k=1

But &[X{"|/] = ~x,A;; (from (2.6) and the properties of multivariate normal distributions),
so that

n n .
SLYONA] = =20y 2 2i+2 3 [V Y (4.5)
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Similarly, (4.1), (4.2) and (4.4) give the conditional covariance matrix of Y” as

n A2(8a—1) 0  A%(a—1) n
43 23 0 oA? 0 =43 x3/M, say. (4.6)
ELOLA(e—1) 0 22(3x—1) k=1

To convert to a more useful form of conditioning, we keep the X; fixed and transform the
XM and X to variables V},, W,, where

n n 3 n n 3
K=2%Hﬂbmﬂ,m=zaﬂﬁbmﬂ, (47)
k=1 k=1 k=1 k=1

andV,,...,V, and W, ..., W, are chosen so that the transformations {X;} - {/;} and {X®} - {W;}
are identical and orthonormal. Then V] = 0<-Y® = 0 and W} = 0« Y® = 0 (given X}, = x;).
Furthermore, the ¥, and W}, have variance A, and covariance 0, while the following identities
hold:

3 Vi S [XM S Wi= 3 [XOE, SUW= 3 X0x®.
k=1 k=1 k=1 k=1 k=1

k=1
Thus we obtain from (4.5) and the above that, for example,

n n
BIY®ILX, = 1, 7O = YO = 0] = 6y, y iy (22 £ 52 4+2 3 V1)

k=1 k=2
n
_ 2 [(n—l)— 3 x,%].
k=1
In general, letting d;; denote the Kronecker delta, and 8 = 1 —4d;;, we have
n
CYEH X, =%, YV =Y®=0] = 2/\8;",-[(71— -3 x?c].
k=1

Itis now simple to convert to the conditioning ¥ = y to obtain that, given Y =y, Y® = Y® = 0,
the Y@ 9 have a multivariate normal distribution with means

E[YENY =y, YO = V2 = 0] = 2A8%5(n—1—y), (4.8)

and covariance matrix WM, (4.9)
where M is as in (4.6).

This suffices to establish the form of the conditional density in (4.3). We now turn our attention
to the density for (Y =y, Y’ =0), i.e. f(y,0). This, however, is considerably easier, and we
use a technique of Hasofer (1970). Let W(s,t) = (W®, W®) denote the vector variable
Y'(s,8)/[Y(s,¢)]¥ and & the event {X,(s,t) = x;, £ = 1,...,n}. Then, noting that the X, are in-
dependent of one another, that from (4.1) and (2.6) X is independent of X,®, and that both
of these are independent of X;, we immediately obtain that, conditional on &, W® is given by

WO =[x, X® + ... +x, XD/ (63 +... +a3)L (4.10)

Thus the conditional distribution of W is bivariate normal with zero means, and covariance
matrix AI, where I is the identity matrix. Since the distribution of W conditional on # is
independent of the x,, it follows that its unconditional distribution is normal and independent of
the Xj. It is therefore independent of Y as well, and so the joint density of W and Y is given by

Sw9) =S s exp (— (4 w1320,

41 Vol. 303. A
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Making the transformation (W, Y) — (Y, Y) in the above, and setting ¥’ = 0, immediately yields

the required density
£(@,0) = gko=9 1 /2n2kn49 D3n), y > 0. (4.11)

Combining this result with (4.8) and (4.9), via (4.3), yields f(y, 0, "), which is the density we
have been seeking.
(b) Profiles
In the following section we shall begin our investigation of the statistical properties of x2- and
M-inverted x3-surfaces by considering initially corresponding properties of their profiles. These
are the processes Y(¢) and Z(t) obtained by restricting the surfaces Y(x,y) and Z(x, y) to straight
lines of the form xsinf —y cos @ = C. If the surfaces are homogeneous, then so are the profiles,
and the covariance functions of the latter are simply determined by those of the former; for
example
Ry (t) = €[Y(s) Y(s+1)]
= &[Y(0,0) Y(tcos 0, tsinb)]
= Ry (tcosb, tsing).

Similarly, the spectral moments of the profile processes are determined straightforwardly by
those of the surfaces. Detailed formulae are given in Longuet-Higgins (19574). Thus, in dealing
with profiles, it is sufficient, and convenient, to treat them without reference to the underlying
surface. Hence, throughout this and the following section, we shall assume that Y(#) is an y2-
process defined on the real line by

Y(t) = X3(t) +... + X2(t), (4.12)

where the X;(f) are independent, homogeneous Gaussian processes with zero mean and co-
variance function R(t). Similarly, Z(f) = M — Y(¢) will denote an M-inverted y2-process. We
shall denote the first three even-ordered spectral moments of X;(¢) as follows:

o = S[X3(1)] = R(0), A = X} = —R"(O),}

v = E{[X%(1)]H = R*(0). (4.13)

Asin the study of surfaces, we shall again assume that ¢ = 1. The implications of this assump-
tion for profiles are identical to those for surfaces. We shall also introduce the parameter

o =v/A% (4.14)

It is easy to check that & > 1 for all processes in one dimension.

Again, for what follows, we shall require the joint probability density for (Y, ¥’, Y”) when
Y’ = 0. This can be obtained by using similar, but simpler, arguments to those used in studying
surfaces, to yield that, conditionally on (Y =y, ¥’ = 0), Y” has a normal distribution with mean

and variance respectively
2A(n—1—y) 4yA?(ax—1), (4.15)

while the density for the conditioning event is given by
S (3, 0) = g9 e~1/24n 490 () (Am)2. (4.16)

(Compare (4.15) and (4.16) with (4.8), (4.9) and (4.11).)
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Equations (4.15) and (4.16) immediately give

" S L —1 ("8 y" -
f(% O,.’/ ) = 2%(n+4)1"(%n) n/\%(a—l)%exp {2(“_1) [.’/a+ 4)(2!/ + A ]}s (4-17)

where & =2A(n—-1). (4.18)
This is the required density.

Finally, we note that there are two reasons for studying profile processes. First, they are far
from devoid of intrinsic interest, particularly as in many experimental situations profile data are
all that is available. Secondly, their study serves as a comparatively simple introduction to the
algebraically awkward manipulations required for the more involved study of surfaces.

5. STATISTICAL PROPERTIES OF PROFILES
(a) The mean number of maxima and minima

For applications to the problems of rough surfaces, our central concern must lie with the
behaviour of M-inverted ya-processes at their local maxima. However, we can, equivalently,
concern ourselves with the local minima of ya-processes. To convert these results to the M-
inverted case, we then need only substitute M —2z, —z’ and —2z” for y,5’ and y” in the final
formulae. Since this is a notationally more convenient procedure, this is, in fact, what we shall do.

Let M (M) denote the expected number of maxima (minima) of a y2-process in unit time, and
C the expected number of critical points, i.e. points at which ¥’(¢) = 0. Then

C=M+M.

The mean number of minima per unit time is given by

M=[" " Wwirwoyay, (5.1
y=0J9"=0

while M and C are given by the same expression with the inner integral converted to — o0 < y” < 0
and —o0 < y” < corespectively. Compare with Cramér & Leadbetter (1967, p. 245), where (5.1)
is developed for Gaussian processes. An identical argument suffices in the y2-case, under appro-
priate regularity conditions.) '

To evaluate (5.1) explicitly we shall need to use the well known fact that if Xisa normal random
variable with mean and variance o2, then setting X+ = max (0, X), we have

&(X*) = p[1 = D(-p/0)] +[o/(2m) ] exp (- }u?/0?), (5.2)

where Bu) = (-2%; f " emrdu (5.3)

Applying this result, (4.17) and (4.18), and setting u* = n—1—u yield

M= w_op(u) du (5.4)
3n—3) o—fu * 2u(a—1)]} — (u*)?
where  p(u) = m# 2u*d){(u(au_ 1)]%}4.[ u "; )] exp [2(—“1{—1))7]> (5.5)
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Both M and C can be expressed as integrals of similar expressions. The integral in (5.4) can be
simplified to yield the following:

M = M en— 1)(a—1)[ 1]%"1%11[ (n—1) w}}
3

2ing I’(%n)

>J

o *
*ydn-De—tup| % .
2%”1“(%71) 2n )%fu Ou uzn—3de ¢{[u(a— 1)]%} du. (5.6)
(Here we have used the fact that

f P 1 paub/u dy — 9 (i_’l)gm K, [2(ab)}], (5.7)

u=0

a,b > 0, where K, (x) is a modified Bessel function of the second kind (Gradshteyn & Ryzhik

1965).)
0.6

scaled number of minima, M/A}
o
S
|

0.2 ] ! ! 1 1 ] ]
1 4 8 12

dimensionless parameter, &

Fiure 11. Scaled expected number of local minima of y;-profile per unit interval. The upper two curves
are calculated from (5.6), while the lower curve is obtained from the asymptotic result (5.8).

To investigate (5.6) more closely, let & — oo; i.e. let the spectra become flat. Then since

Ky(2) ~ $(m) (32)™

for small z, the first term on the right-hand side of (5.6) behaves like (Aa)¥/2r as a - 00. The
integral converges to zero as a — co. Thus

M ~ (Ax)¥/2r, large a. (5.8)

This is an unexpected and surprising result, since, in the current parametrization, standard
results (see, for example Cramér & Leadbetter 1967) give us that the mean number of local
minima (or maxima) of each of the X () processes is given by

= (Aa)}/2n (5.9)
for all A and «.
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The (asymptotic) approximation given in (5.8) is actually remarkably good for virtually all
values of n and a, as demonstrated in figure 11, where A /A% is plotted for various values of nand «.

Similar formulae can be developed for M and C, all of which are readily amenable to numerical
evaluation.

(b) An aside on conditional probabilities

In the following two subsections, and again in § 6, we wish to talk about probabilities such as
‘the probability that Y (0) < u given that Y (t) had a local minimum at t = 0. Since, in general, there
will be zero probability of this event occurring at the instant ¢ = 0, considerable care must be
taken in defining such conditional probabilities. For this example we shall choose to define it as
the ratio of the expected number of local minima in unit time at which Y (¢) < « to the expected
number of local minima in unit time. Since standard extensions of (5.1) give this ratio as

a2 [ " i o avay,
y=0J y"=0

we can differentiate this expression with respect to « to obtain a conditional density for Y(0)
given by

M“fﬁo ly"1f (u, 0,9") dy". (6.10)

We shall denote this by f(«|local min), to differentiate between this type of conditioning (on
process behaviour) and the simpler type of conditioning (on random variable behaviour) used,
for example, in (4.3).

We shall in general approach conditional probabilities in this fashion. This choice of con-
ditioning — by taking ratios of expectations—may be justified by noting that under appropriate
regularity conditions (including ergodicity), this definition is equivalent to the so-called korizontal
window conditioning of Kac & Slepian (1959). For further details regarding processes see Cramér
& Leadbetter (1967), while for fields see Adler (1981), Wilson & Adler (1982), or Lindgren (1972).

(¢) The conditional density of heights at maxima and minima

Suppose Y has a local minimum at the point ¢ = 0. Then, according to the above, the con-
ditional density for Y(0) is given by (5.10). However, the integral in (5.10) is easy to evaluate,
for we have,

ftufmin) = M (w0 [ 1y717 010, 0)dy"

where f (u, 0) is given by (4.16). But, using the results of § 5 () we have that

flahmin) = p(a) [ p) (5.11)

where p(u) is as given by (5.5). Note that the only parameters appearing in this density are « and z.

Examples of this density for various values of n, and « are given in figure 12. A feature common
to all these examples is the significant skewness of the distribution, corroborating our contention
in § 24 that any skewness in the profile distribution will also be exhibited in the distribution of
extrema heights. In general, the conditional distribution is very similar to the unconditional
distribution, shifted to the left. The similarity is a consequence of the fact that the minima are a
sample, albeit non-random, from the unconditional distribution, while the shift is a consequence
of the bias of the sampling.
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It is possible to derive the conditional distribution of profile heights at local maxima of the
x3-surface in precisely the same fashion as that for minima was obtained. This is given by

} Jf(u|max) = g(u)/M, (5.12)
where M = fo g(u) du and

£ = ey o o ) [ 5] oo [l

0.2

/
b
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height of minimum

Ficure 12. Probability density for heights of local minima of x2-profiles. The pair of numbers associated
with each curve gives the values of the parameters » and « in that order.
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Ficure 13. Probability density for heights of local maxima of x2-profiles.
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Some examples of this density are given in figure 13. Again the density exhibits the skewness
inherent in the unconditional height density. However, as opposed to what occurs when con-
ditioning on minima, the densities exhibit a shift to the right of the original distribution.

(d) The conditional density of the curvature at maxima and minima

Now let us suppose that Y has a local minimum at ¢ = 0, and we are interested in the distri-
bution of the curvature at that minimum, i.e. the distribution of ¥”(¢). According to the approach
adopted in § 45, this will be given by

f(z|min) = M-1|z| f : Fu,0,2)du, z 3 0. (5.13)
0.075

0.05

probability density

0.025

0

scaled curvature of minimum, z/A
Ficure 14. Probability density for scaled curvature of local minima of x2-profiles.

To evaluate the integral we again use the result (5.7), which together with (5.13) and (4.17)

yields © e—e-0)2Aa-1) | 7 _ §|3n—2) z—8| ot
f(4,0,z)du = Lol
07 27T (n) mAdniD gl " Hn=D | 9305 1) |

To simplify this formula, we simply scale the curvature by A~1, to obtain from (5.13) and the
above the scaled density

. oA} z|z — n + 1]3n—2) e—~e—n+Di(@—1)
f(Az|min) = I l

- ¥
lz_”+_1_|:‘_‘_] (5.14)

e T s Koo Sy

Note that since M is a multiple of A} (cf. (5.6)), the right-hand side of the above equality is
actually independent of A. Examples of this density are given in figure 14.

Finally, we note that using the standard asymptotic expansion (n/2z)} e~ for K, (2) (see, for
example, Abramowitz & Stegun 1965), we obtain from (5.13) and (5.14) that for large z

f(zmin) ~ Cyz(z—n+1)}-9exp{— (z—n+1) (1 +ad) /22 (- 1)},

where C,, is the obvious normalization constant.
Using virtually identical arguments, the exact form and a similar asymptotic expansion can be
developed for the density of the curvature at a maximum of the profile.
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6. STATISTICAL PROPERTIES OF SURFACES
(a) The mean number of maxima and minima

Asin§5a, let M denote the mean number of local minima of Y (s, ) as (s, £) ranges over the unit
square. Then according to the corollary to theorem 5.1.1 of (Adler 1981), appropriate regularity
conditions ensure that if n > 1

M= [ [ oo [y u s 0,57 dudy, (6.1)
where 4 is the set of (y 9, y@& D, 3© 2) for which the matrix
y&0 D
[y‘l’ vy 2’]

is positive definite. Writing (X, Y, Z) for (Y@, YLD Y©.2)  (4.8) and (4.9) give us that the
conditional probability density of these second-order partial derivatives can be written as

S(x,y,2|u,0) = mexp {—Siu (x—2Au*,y, z— 2Au*) M1 (x —2Au*,y,z— 2/\u*)'} .

where u* =n—1-—u, |M|=402A%20—1), (6.2)
1 [oc(3ac—1) 0 —a(oe—1)
and M= ———— = 0 40(2a—1) 0 .
420320 —1) | ) 0 a(3a—1)

The exponent in the above can be expressed as follows:
— g ([ +2) — 4adu¥]2 +ya(2a— 1) + (v —2)2a (22— 1)}/ [4202(20— 1)].

Let us now make the substitution
t1=x+Z, t2=y2, t3=x—z.
Then note that xz—y?=12—13—12,

while the condition that the matrix [j %] is positive definite simplifies to # > #+¢3 and ¢, > 0.
Noting that the Jacobian of this transformation is 2, we can substitute into (6.1) to obtain

1 © o)
M=—— —% 0 ff t2_t2_t2
= 16(211:)’3|M|%L=ou f(®0) h=0 tgﬂgq.;,( i-8-14)
_ L) G 4
* exp[ 8u|4A%(20.— 1) et e ] dudt, d, dt,. (6.3)

Consider the inner triple integral, and convert to cylindrical coordinates, by setting
t,=2, r=(8§+8)3% 0= arccos(ty/r) = arcsin (t3/r).
Then the region of integration simplifies considerably to
0<z<oo, O0<r<z, 0<6<2nm

while B—(B+8) =22—r2,
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Thus the inner integrals of (6.3) simplify to

f dzf dﬁf dr(z2—r2)rexp[ 32u‘(f/\)2 32(;1_2?;\:*_)21)], (6.4)

where h(6) = 1+ 3 cos20. (6.5)

Integrating out r simplifies (6.4) to

f : dz f :dﬁ exp{ — (z— 4Au*)2/32u0%(2a — 1)}

2%uaA222 2920204 2920204
{ O hz(g)»"‘ 7%(0) CXP[—Zzh(ﬁ)/32uou\2]:. (6.6)

To integrate over z, we use the following result, easily established by integration by parts:

oozz e—Ye—wo? 7 — (o? +p2) ¢(ﬂ/a') + W e-butior,

1 j‘ o
@)t (2n)}
Tedious, but routine, integration then simplifies (6.6) to (6.8), in which

g2(a, 0) = 1+[(20—1)/a] (1 + 3 cos2d), (6.7)

2108, A8 [ 21 (20 — 1]%f a0 1 <[(2oc 1)+(”*)]¢{[u(2o’:i 1)]%}
+“*<(22;j);>’*‘exp[2u-(;;"‘_)j)]>k;(g) ‘D{[u(zzil)]é}
g =) o = gy ) 69

Integrating over 6, and substituting into (6.3), with the use of (6.2) and (4.11), finally yields

M:/\f:p(u)du

where
2utn—2) e—tu (u*)? u* u* (20— 1)} — (u*)?
p(u) =W<[(2“—1)+T_E“]¢{[u(2a—1)]%}+ (2mu)? exP{2u(2oc—1)}
8 * i 1 — (u*)*[1—g7%(, 0)]
e O R e LS (6.9)

It is interesting, and useful, to note that as « becomes large both p(x) and M simplify sub-
stantially. It is easy to check that for large o we have

w2 e—u
(i)

ot et (3

p(u) ~ T2 T () {4 11:3#[ [(143cos26)2(1+2cos26)3]1 dﬁ} ~ 0.4408 0t ——~—

(6.10)

where the last approximation is obtained by numerical integration. Substitution into (6.8) and
integration over ¥ immediately yields that for large

M =~ 0.4408 . (6.11)

Longuet-Higgins (1975a) showed that each of the component X, (s, ¢) fields has a mean number

of local minima of
al/6m3} ~ 0.03063aA.

42 Vol. 303. A
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Thus we see that, quite unlike the situation with profiles, (cf. (5.8) and (5.9)) x2 and Gaussian
surfaces do not have similar numbers of local minima. We have not been able to find an intuitively
appealing reason why this difference arises between one and two dimensions.

In figure 15 graphs of M/A, as functions of «, are given for various values of n. As for profiles
the convergence of the complicated formula (6.8) for M to the approximation based on (6.10)
is gratifyingly rapid.

This completes our discussion of the mean number of local minima of a y3-process. As is the
case with profiles, formulae similar to (6.8) and (6.9) could be developed for maxima and all
critical points. However, we shall not do so here.

>
1

scaled number of minima, M/A
o
1

] ] l ] I )
1.5 4 8 12

dimensionless parameter, &

Ficure 15. Scaled expected number of local minima of x2-surface per unit square. The upper two curves are
calculated from (5.22) while the lower curve is obtained from the asymptotic result (5.24).

0.2

probability density
=
-

0 10 20
height of minimum.
Ficure 16. Probability density for heights of local minima of y2-surfaces.
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(b) The conditional density of heights at maxima and minima

As we did when studying profiles, we shall again define conditional probabilities as ratios of
expectations. Thus, if we condition on the event ‘Y(s,¢) has a local minimum at the point
s =t= 0> we automatically obtain the following conditional density for the height of this
minimum:

Salminy = p) 0 (6.12)

where p(u) is given by (6.9). Note that this density is parametrized by « and z only. Examples are
given in figure 16, where, once again, the skewness of the underlying distribution is apparent.
Note that when « is large we obtain from (6.10) that

S (u|min) x udn—2e—iu/24n I'(in).

That is, the original y2-distribution is recovered.

(¢) The conditional density of the mean curvature at minima

The mean curvature « at any point on a surface is simply defined as the mean of the principle
curvatures k; and k, at that point. However, asis noted by Nayak (1971), the sum of the curvatures
along any two orthogonal directions at a point on the surface is equal to the sum of the principal
curvatures. Thus the mean curvature at a minimum of Y (s, £) is given by

Kk = —3[Y20(s, ) + TO9(s, £)]. (6.13)

Our interest now lies in determining the distribution of « at a minimum of Y(s,#) at which
Y(s,t) = u. With the same conditioning arguments as before, it follows from (6.6) by putting
& = —}z that this density is given by

0
S (k||min of height «) = p(«, u)/f__ plk,u) dk (6.14)

where # > 0, k < 0, and
bk, u) = j:ndﬁcxp [—(k—2Au*)2/8uA2(2a—1)] <:(L;)— 27?;(___0;/1)2{1 —exp [-;7'2-:—%(;—9]}> (6.15)

If we now scale the mean curvature, setting y = «/Aa} = k/v}, and integrate out & where possible,
we find we can replace (6.14) by

Flhmin of height ) = g ) [ [*_g(o,1)dy (6.16)

where now y < 0, ¥ > 0, and

g(y,u) = exp [W] :y%u —5u®+ 32u2f:ﬂh'2(0) exp [—_!/_82_1_/2(_0)_] dﬁ}. (6.17)

Once again we have that the distribution of the normalized curvature at minima of specified
heights, and so of any height, depends only on 7 and «.

An interesting, but unexpected, fact now arises from the above formulae. It is clear, from
(6.15), that as # — 0 the distribution of the non-normalized curvature tends to the distribution
degenerate at 2A(n—1).

42-2


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

460 R.J.ADLER AND D.FIRMAN

This indicates the presence, in inverted y3-surfaces, of a phenomenon qualitatively and
remarkably different to that present in the Gaussian model. At the high level maxima of a
Gaussian surface the mean curvature is extremely large. In fact, it tends to infinity as the level -
tends to infinity. (Belyaev 1973; Nosko 1969). Thus high maxima tend to sit at the top of very
sharp peaks. For M-inverted y2-surfaces, however, each maximum near the level A1 lies at the
tip of a peak of almost fixed mean curvature, 2A(n — 1). This, presumably, is a consequence of the
fact that M-inverted y3-surfaces are bounded above.

An important consequence of this phenomenon is that models of surface contact that assume
a Gaussian model for the surface (see, for example, O’Callaghan & Cameron 1976, Nayak 1973 b,
Greenwood & Williamson 1966) can be expected to contain qualitative inaccuracies when the
surface is better fitted by an inverted y2-model than a Gaussian one, as generally only the high
level maxima are important in the modelling process. An indication of the type of inaccuracies
that can arise, and how they can be resolved, is given in § 5 of Adler (1982).

7. SOME FURTHER COMMENTS

In this, concluding, section we shall attempt to tidy up some of the loose ends left over from
the preceding six sections.

The first comment we have to make relates to the problem of mathematical rigour. Throughout
the paper we have always implicitly assumed that the various expectations we were taking were
finite, and that the variables we were considering were well defined. However, this is, unfortu-
nately, not always so. For example, if the component Gaussian surfaces X, (s, ¢) had exponential
covariance functions of the form R(s,¢) = exp (—as— ft), say, then they would have an infinite
number of local maxima and minima, and all of our discussions about maxima and minima would
be meaningless. In the main body of the paper we have neglected to make these implicit assump-
tions explicit, and moreover, have often done mathematical manipulations that are only valid
under certain regularity conditions. These oversights were purposeful, as the paper was written
to be read by practical people and not pure mathematicians. Nevertheless, it is important to note
that regularity conditions are implicitly assumed throughout the entire paper. Details of these
conditions in full generality are given in Adler 1981, ch. 7 and 3). A sufficient condition,
however, for all of the results of this paper to be valid is that the covariance function R(s, t) of the
X;.(s, t) satisfy the following inequality for all i +j = 4, some C > 0, and all (s, t) with 5%+ 2 small
enough: O'R(s,t) d*R(0,0)

T astol

In the Introduction we noted that the first serious attempt to build stochastic models of rough
surfaces was via the three-point model of Greenwood & Williamson (1966). This model, while
simple, was of considerable usefulness. Its mathematical simplicity lay in the fact that it was
necessary to consider only three points on a profile at a given time, and thus one had only to deal
with three-dimensional (Gaussian) distributions which, by virtue of a Markov property that was
assumed to hold, simplified even further. In dealing with both y3-profiles, and (even Gaussian)
surfaces, such mathematical simplification does not arise out of a three-point model. In the
former case this is because trivariate (and even bivariate) y2-distributions are not as easy to
manipulate as are their Gaussian counterparts. In the latter case, three points simply do not
contain enough information about the local behaviour of a surface for any informative analysis
to be undertaken. Consequently the type of model we have considered here is predicated not only

< C(s2+12). (7.1)
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on the grounds that it is mathematically more sophisticated than a three-point type of model,
but also on the grounds that the seemingly simpler model is, for profiles, not much simpler, and,
for surfaces, uninformative.

In §4 we imposed the restrictive assumption that the random surfaces we were considering
were isotropic, which had the convenient effect of substantially simplifying the necessary mathe-
matical manipulations. Unfortunately, not all real surfaces are isotropic. In fact, Bowyer’s
surface, which we explored in some detail in § 3, is distinctly anisotropic, as the surface exhibits
quite distinct troughs and peaks parallel to the direction of grinding. This can be seen quite
clearly in figure 17. Although one would expect that the qualitative aspects of the analysis of
§ 5 would be the same for isotropic and anisotropic surfaces, we have, at this stage, been unable
to make a detailed analysis in the general situation. (Note, however, that the upcrossing charac-
teristic analysis of § 3 does not assume isotropy.)

mm;:: @%Q@ * e b3 g

- - ,}1&@
Ficure 17. Contour lines at the level 2 pm of the stainless steel surface of Bowyer. The direction of grinding
was parallel to the horizontal axis. The anisotropy of the surface is clear.

The final comment we have to make on the results of the preceding two sections is to note the
fact, perhaps obvious, that we have not pushed the models to the limit in terms of obtaining
densities for and expectations of every random variable of conceivable interest. For example,
when dealing with surfaces in § 54 we considered the curvature at minima at a fixed level, while
when dealing with profiles in § 4¢ we did not fix the level. However, we believe that we have
presented enough detail for the interested reader to integrate over levels in § 54, or to fix the
levelin § 4¢, as well as to derive, without too great an effort, the distribution of virtually any other
random variable (of a similar ilk to those already considered) that he may be interested in.

While doing the research reported in this paper, R.J. A. was supported in part by a Queen
Elizabeth IT Fellowship and in part by Technion VPR fund, grant number 190-527. D. F. was
supported as a Professional Officer by the Australian Research Grants Council. We are grateful
to all three bodies for their support.

A referee made an unusually careful reading of an earlier version of this paper, and suggested
a number of changes which we feel have substantially improved its structure. We are also grateful
to him.
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